4.8 Article

Enhanced contrast dual polymer electrochromic devices

Journal

CHEMISTRY OF MATERIALS
Volume 14, Issue 7, Pages 3118-3122

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/cm020050y

Keywords

-

Ask authors/readers for more resources

The ability to match two complementary polymers constitutes an important step forward in the design of electrochromic devices (ECDs). Here we show that the necessary control over the color, brightness, and environmental stability of an electrochromic window can be achieved through the careful design of anodically coloring polymers. For this purpose, we have constructed ECDs based on dimethyl substituted poly(3,4-propylenedioxythiophene) (PProDOT-Me-2) as a cathodically coloring layer, along with poly [3,6-bis(2-ethylenedioxythienyl)-N-methyl-carbazole] (PBEDOT-NMeCz) and N-propane sulfonated poly(3,4-propylenedioxypyrrole) (PProDOP-NPrS) as anodically coloring polymers. Comparison of the results shows that using PProDOP-NPrS as the high band gap polymer has several advantages over the carbazole counterpart. The main benefit is the opening of the transmissivity window throughout the entire visible spectrum by moving the pi-pi* transition of the neutral anodically coloring material into the ultraviolet region. Another advantage of the PProDOP-NPrS based device is the noticeable increase in the optical contrast as evidenced by an increase in the transmittance change of the device (Delta%T) from 56% to 68%, as measured at 580 nm. These devices exhibit a 60% change in luminance along with half-second switching times for full color change. Moreover, they were found to retain up to 86% of their optical response after 20 000 double potential steps, opening up new directions in optical technology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available