4.4 Article

Thermal stability of unsupported gold nanoparticle: a molecular dynamics study

Journal

SURFACE SCIENCE
Volume 512, Issue 3, Pages 262-268

Publisher

ELSEVIER
DOI: 10.1016/S0039-6028(02)01692-8

Keywords

molecular dynamics; semi-empirical models and model calculations; gold; faceting; surface energy; surface melting

Ask authors/readers for more resources

The thermal stability Of unsupported gold (Au) nanoparticles, containing 140-6708 atoms. has been investigated using molecular dynamics simulation in combination with the modified embedded-atom-method potential. It is found that the melting temperature of the Au nanoparticles decreases drastically with decreasing particle size. The melting temperatures calculated in the present study are in excellent agreement with the previous experimental data. It is further confirmed that the calculated equilibrium shape of the Au nanoparticles is a truncated octahedron bounded by eight (111) and six (100) facets. which can be explained by the anisotropy of the surface energy of Au. On heating. the premelting phenomenon of the surface atoms is apparently observed prior to the melting of the whole particle. (C) 2002 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available