4.6 Article

Molecular profiling of angiogenesis markers

Journal

AMERICAN JOURNAL OF PATHOLOGY
Volume 161, Issue 1, Pages 35-41

Publisher

AMER SOC INVESTIGATIVE PATHOLOGY, INC
DOI: 10.1016/S0002-9440(10)64154-5

Keywords

-

Categories

Funding

  1. NCI NIH HHS [N01-CN-85070-72] Funding Source: Medline
  2. NEI NIH HHS [EY 08670, R01 EY008670] Funding Source: Medline

Ask authors/readers for more resources

The goal of this study was to develop a sensitive, simple, and widely applicable assay to measure copy numbers of specific mRNAs using real-time quantitative reverse transcriptase-polymerase chain reaction (RT-PCR), and identify a profile of gene expression closely associated with angiogenesis. We measured a panel of nine potential angiogenesis markers from a mouse transgenic model of prostate adenocarcinoma (TRAMP) and a mouse skin model of vascular endothelial growth factor (VEGF)-driven angiogenesis. In both models, expression of VEGF correlated with expression of mRNAs encoding other angiogenic cytokines (angiopoietin-1 and angiopoietin-2), endothelial cell receptor tyrosine kinases (Flt-1, KDR, Tie-1), and endothelial cell adhesion molecules (VE-cadherin, PECAM-1). Relative to control, in dermis highly stimulated by VEGF, the Ang-2 mRNA transcript numbers increased 35-fold, PECAM-1 and VE-cadherin increased 10-fold, Tie-1 increased 8-fold, KDR and Flt-1 each increased 4-fold, and Ang-1 increased 2-fold. All transcript numbers were correspondingly reduced in skin with less VEGF expression, indicating a relationship of each of these seven markers with VEGF. Thus, this study identifies a highly efficient method for precise quantification of a panel of seven specific mRNAs that correlate with VEGF expression and VEGF-induced neovascularization, and it provides evidence that real-time quantitative RT-PCR offers a highly sensitive strategy for monitoring angiogenesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available