4.6 Article

Integrated polymer micro-ring resonators for optical sensing applications

Journal

JOURNAL OF APPLIED PHYSICS
Volume 117, Issue 10, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4914308

Keywords

-

Funding

  1. PONANT project - Lannion Tregor Communaute
  2. Conseil General des Cotes d'Armor
  3. Region Bretagne
  4. Feder
  5. French Research Ministry

Ask authors/readers for more resources

Micro-resonators (MR) have become a key element for integrated optical sensors due to their integration capability and their easy fabrication with low cost polymer materials. Nowadays, there is a growing need on MRs as highly sensitive and selective functions especially in the areas of food and health. The context of this work is to implement and study integrated micro-ring resonators devoted to sensing applications. They are fabricated by processing SU8 polymer as core layer and PMATRIFE polymer as lower cladding layer. The refractive index of the polymers and of the waveguide structure as a function of the wavelength is presented. Using these results, a theoretical study of the coupling between ring and straight waveguides has been undertaken in order to define the MR design. Sub-micronic gaps of 0.5 mu m to 1 mu m between the ring and the straight waveguides have been successfully achieved with UV (i-lines) photolithography. Different superstrates such as air, water, and aqueous solutions with glucose at different concentrations have been studied. First results show a good normalized transmission contrast of 0.98, a resonator quality factor around 1.5 x 10(4) corresponding to a coupling ratio of 14.7%, and ring propagation losses around 5 dB/cm. Preliminary sensing experiments have been performed for different concentrations of glucose; a sensitivity of 115+/-8 nm/RIU at 1550 nm has been obtained with this couple of polymers. (C) 2015 AIP Publishing LLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available