3.8 Article

Laser ablation of silk protein (fibroin) films

Publisher

INST PURE APPLIED PHYSICS
DOI: 10.1143/JJAP.41.4772

Keywords

ablation; protein; fibroin; thin organic film; time-resolved spectroscopy

Ask authors/readers for more resources

Fibroin is the main protein component of silk and is expected to have functional applications in bioelectronics and medicine. We investigated nanosecond (ns) pulsed laser ablation of solid fibroin films with/without a dye as a photosensitizer. Laser lights at 248 nm and 532/355/351 nm excited the peptide bond of fibroin and the dye, respectively. The neat film irradiated at 248 nm was scarcely accessible to etching and swelling, and instead, a microscopic pattern (structure) was formed. In contrast, for ablation of the doped film at 532/355/351 nm, we found marked swelling (height similar to500 mum) and deep etching (depth similar to10 mum) on the irradiated surfaces. The dye-photosensitized ablation was brought about by a photothermal mechanism, whereas ablation of neat films may be induced by another process, such as a photochemical one. The ablation processes are discussed in terms of the properties of fibroin and the mode of excitation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available