4.2 Article

Modulation of visual cortical excitability in migraine with aura: effects of 1 Hz repetitive transcranial magnetic stimulation

Journal

EXPERIMENTAL BRAIN RESEARCH
Volume 145, Issue 2, Pages 177-181

Publisher

SPRINGER
DOI: 10.1007/s00221-002-1096-7

Keywords

visual cortex; migraine; transcranial magnetic stimulation; low frequency rTMS; phosphene threshold

Categories

Ask authors/readers for more resources

Recent studies showed hyperexcitability of the occipital cortex in subjects affected by migraine with aura. It has been shown that 1 Hz repetitive transcranial magnetic stimulation (rTMS) reduces excitability of visual cortex in normal subjects. The aim of the study was to investigate the effects of low frequency (1 Hz) rTMS on visual cortical excitability by measuring changes in phosphene threshold (PT) in subjects with migraine with aura. Thirteen patients with migraine with aura and 15 healthy controls were examined. Using a standardized transcranial magnetic stimulation protocol of the occipital cortex, we assessed the PT (the lowest magnetic stimulation intensity at which subjects just perceived phosphenes) before and after a 1-Hz rTMS train delivered at PT intensity for 15 min. The difference in the proportion of subjects reporting phosphenes in migrainer and control groups was significant (migrainers: 100% vs controls 47%; P<0.05), and 1 Hz rTMS over the occipital cortex led to a significantly increased visual cortex excitability expressed as a decrease in PT in subjects affected by migraine with aura. Conversely, after a 1-Hz TMS train normal subjects showed increased PT values, which suggests a decreased visual cortex excitability. Our findings confirm that the visual cortex is hyperexcitable in migrainers and suggest a failure of inhibitory circuits, which are unable to be upregulated by low frequency rTMS.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available