4.7 Article

Different activation dynamics in multiple neural systems during simulated driving

Journal

HUMAN BRAIN MAPPING
Volume 16, Issue 3, Pages 158-167

Publisher

WILEY-LISS
DOI: 10.1002/hbm.10032

Keywords

fMRI; driving; brain; independent component analysis

Funding

  1. NCRR NIH HHS [M01-RR00052, P41 RR015241, M01 RR000052, 1P41RR15241-01] Funding Source: Medline

Ask authors/readers for more resources

Driving is a complex behavior that recruits multiple cognitive elements. We report on an imaging study of simulated driving that reveals multiple neural systems, each of which have different activation dynamics. The neural correlates of driving behavior are identified with fMRI and their modulation with speed is investigated. We decompose the activation into interpretable pieces using a novel, generally applicable approach, based upon independent component analysis. Some regions turn on or Off, others exhibit a gradual decay, and yet others turn on transiently when starting or stopping driving. Signal in the anterior cingulate cortex, an area often associated with error monitoring and inhibition, decreases exponentially with a rate proportional to driving speed, whereas decreases in frontoparietal regions, implicated in vigilance, correlate with speed. Increases in cerebellar and occipital areas, presumably related to complex visuomotor integration, are activated during driving but not associated with driving speed. (C) 2002 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available