4.8 Article

Phonon-enhanced light-matter interaction at the nanometre scale

Journal

NATURE
Volume 418, Issue 6894, Pages 159-162

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nature00899

Keywords

-

Ask authors/readers for more resources

Optical near fields exist close to any illuminated object. They account for interesting effects such as enhanced pinhole transmission 1 or enhanced Raman scattering enabling single-molecule spectroscopy(2). Also, they enable high-resolution (below 10 nm) optical microscopy(3-6). The plasmon-enhanced near-field coupling between metallic nanostructures(7-9) opens new ways of designing optical properties(10-12) and of controlling light on the nanometre scale(13,14). Here we study the strong enhancement of optical near-field coupling in the infrared by lattice vibrations (phonons) of polar dielectrics. We combine infrared spectroscopy with a near-field microscope that provides a confined field to probe the local interaction with a SiC sample. The phonon resonance occurs at 920 cm(-1). Within 20 cm(-1) of the resonance, the near-field signal increases 200-fold; on resonance, the signal exceeds by 20 times the value obtained with a gold sample. We find that phonon-enhanced near-field coupling is extremely sensitive to chemical and structural composition of polar samples, permitting nanometre-scale analysis of semiconductors and minerals. The excellent physical and chemical stability of SiC in particular may allow the design of nanometre-scale optical circuits for high-temperature and high-power operation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available