4.6 Article

Protein kinase C and guanosine triphosphate combine to potentiate calcium-dependent membrane fusion driven by annexin 7

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 277, Issue 28, Pages 25217-25225

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M202452200

Keywords

-

Ask authors/readers for more resources

Exocytotic secretion is promoted by the concerted action of calcium, guanine nucleotide, and protein kinase C. We now show that the calcium-dependent membrane fusion activity of annexin 7 in vitro is further potentiated by the combined addition of guanine nucleotide and protein kinase C. The observed increment involves the simultaneous activation of annexin 7 by these two effectors. Guanosine triphosphate (GTP) and its non-hydrolyzable analogues optimally enhance the phosphorylation of annexin 7 by protein kinase C in vitro. Reciprocally, phosphorylation by protein kinase C significantly potentiates the binding and hydrolysis of GTP by annexin 7. Only protein kinase C-dependent phosphorylation has a significant positive effect on annexin 7 GTPase, although other protein kinases, including cAMP-dependent protein kinase, cGMP-dependent protein kinase, and pp60(c-src), have been shown to label the protein with high efficiency. In vivo, the ratio of bound GDP/GTP and phosphorylation of annexin 7 change in direct proportion to the extent of catecholamine release from chromaffin cells in response to stimulation by carbachol, or to inhibition by various protein kinase C inhibitors. These results thus lead us to hypothesize that annexin 7 may serve as a common site of action for calcium, guanine nucleotide, and protein kinase C in the exocytotic membrane fusion process in chromaffin cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available