4.5 Article

PTEN blocks insulin-mediated ETS-2 phosphorylation through MAP kinase, independently of the phosphoinositide 3-kinase pathway

Journal

HUMAN MOLECULAR GENETICS
Volume 11, Issue 15, Pages 1687-1696

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/hmg/11.15.1687

Keywords

-

Funding

  1. NCI NIH HHS [R01-CA53271, P30CA16058] Funding Source: Medline

Ask authors/readers for more resources

The tumor suppressor PTEN possesses lipid and protein phosphatase activities. It has been well established that the lipid phosphatase activity is essential for its tumor-suppressive function via the phosphoinositide 3-kinase (PI3K) and Akt pathways. The precise role of the protein phosphatase activity is still unclear. In the current study, we demonstrate that overexpression of wild-type PTEN in the MCF-7 breast cancer line results in phosphatase activity-dependent decreases in the phosphorylation of ETS-2, which is a transcription factor whose DNA-binding ability is controlled by phosphorylation. Exposure of MCF-7 cells to insulin, insulin-like growth factor 1 (IGF-1) or epidermal growth factor (EGF) can lead to the phosphorylation of ETS-2, Akt and ERK1/2. The MEK inhibitor PD590089 abrogates insulin-stimulated phosphorylation of ETS-2. In contrast, the PI3K inhibitor LY492002 has no effect on insulin-stimulated phosphorylation of ETS-2, despite the fact that it diminishes insulin-stimulated phosphorylation of Akt. Interestingly, overexpression of PTEN in MCF-7 leads to blockade of insulin-stimulated, but not EGF-stimulated, phosphorylation of ERK, accompanied by dramatic decreases in ETS-2 phosphorylation. We further show that the relationship of PTEN and ETS-2 has functional significance by demonstrating that PTEN abrogates activation of the uPA Ras-responsive enhancer, a target of ETS-2 action, in a phosphatase-dependent manner, irrespective of the presence or absence of insulin. Our observations, therefore, suggest that PTEN blocks insulin-stimulated ETS-2 phosphorylation through inhibition of the ERK members of the MAP kinase family independently of PI3K, and that the PTEN effect on the phosphorylation status of ETS-2 may be mediated through PTEN's protein phosphatase activity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available