4.5 Article

Gamma-aminobutyric acid circuits shape response properties of auditory cortex neurons

Journal

BRAIN RESEARCH
Volume 944, Issue 1-2, Pages 219-231

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S0006-8993(02)02926-8

Keywords

auditory cortex; bicuculline; CGP35348; inhibition; central auditory system

Categories

Funding

  1. NIDCD NIH HHS [P01 DC03600-01A1] Funding Source: Medline

Ask authors/readers for more resources

Neurons containing gamma aminobutyric acid (GABA) are widely distributed throughout the primary auditory cortex (AI). We investigated the effects of endogenous GABA by comparing response properties of 110 neurons in chinchilla AI before and after iontophoresis of bicuculline, a GABA(A) receptor antagonist, and/or CGP35348, a GABA(B) receptor antagonist. GABA(A) receptor blockade significantly increased spontaneous and driven discharge rates, dramatically decreased the thresholds of many neurons, and constricted the range of thresholds across the neural population. Some neurons with 'non-onset' temporal discharge patterns developed an onset pattern that was followed by a long pause. Interestingly, the excitatory response area typically expanded on both sides of the characteristic frequency; this expansion exceeded one octave in a third of the sample. Although GABA(B) receptor blockade had little effect alone, the combination of CGP35348 and bicuculline produced greater increases in driven rate and expansion of the frequency response area than GABA(A) receptor blockade alone, suggesting a modulatory role of local GABA(B) receptors. The results suggest that local GABA inhibition contributes significantly to intensity and frequency coding by controlling the range of intensities over which cortical neurons operate and the range of frequencies to which they respond. The inhibitory circuits that generate nonmonotonic rate-level functions are separate from those that influence other response properties of At neurons. (C) 2002 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available