4.6 Article

Direct transformation of cubic diamond to hexagonal diamond

Journal

APPLIED PHYSICS LETTERS
Volume 81, Issue 4, Pages 610-612

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1495078

Keywords

-

Ask authors/readers for more resources

For a long time, hexagonal diamond has been formed only by static and shock wave compression of well-crystallized graphites. Here, we demonstrate that cubic diamond loses its structure stability and transforms to hexagonal diamond in massive. This transformation has been completed in nanoseconds under a shock wave compression of cubic diamond, in which the shock pressure and temperature are only tens of giga pascal and hundreds of kelvin, thermodynamically being within the stability of cubic diamond. The formation of hexagonal diamond is interpreted as a direct transition (solid to solid) of cubic diamond by a kinetic mechanism due to the shear stress and enhanced temperature induced by the rapid shock wave compression. (C) 2002 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available