4.8 Article

A facile approach to architecturally defined nanoparticles via intramolecular chain collapse

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 124, Issue 29, Pages 8653-8660

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja026208x

Keywords

-

Ask authors/readers for more resources

A novel approach is presented for the controlled intramolecular collapse of linear polymer chains to give well-defined single-molecule nanoparticles whose structure is directly related to the original linear polymer. By employing a combination of living free radical polymerization and benzocyclobutene (BCB) chemistry, nanoparticles can be routinely prepared in multigram quantities with the size being accurately controlled by either the initial degree of polymerization of the linear chain or the level of incorporation of the BCB coupling groups. The latter also allows the cross-link density of the final nanoparticles to be manipulated. In analogy with dendritic macromolecules, a significant reduction of up to 75% in the hydrodynamic volume is observed on going from the starting random coil linear chains to the corresponding nanoparticles. The facile nature of the living free radical process also permits wide variation in monomer selection and functional group incorporation and allows novel macromolecular architectures to be prepared. Furthermore, the use of block copolymers functionalized with benzocyclobutene groups in only one of the blocks gives, after intramolecular collapse, a hybrid architecture in which a single linear polymer chain is attached to the globular nanoparticle.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available