3.8 Article

Ontogeny of descending serotonergic innervation and evidence for intraspinal 5-HT neurons in the mouse spinal cord

Journal

DEVELOPMENTAL BRAIN RESEARCH
Volume 137, Issue 1, Pages 81-88

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S0165-3806(02)00414-5

Keywords

serotonin; descending pathway; development; mouse embryo

Ask authors/readers for more resources

Neuronal networks in the mouse spinal cord express serotonin (5-HT)-induced rhythmic motor activity at early developmental stages (embryonic day (E) 12.5). Later in development, by post-natal day (P) 10, the 5-HT-evoked rhythmic motor activity matures and acquires an adult locomotor-like pattern. With the view to establishing a relationship between the ontogeny of locomotor networks and the maturation of spinal 5-HT systems, we have traced 5-HT immunoreactivity in the mouse spinal cord from E12.5 to PN10. By E12.5, descending 5-HT immunoreactive (5-HT-ir) fibers that likely originate from raphe nuclei were detected in the ventral and lateral funiculi, at anterior cervical spinal levels, but not at more caudal levels. Descending 5-HT-ir axons reached thoracic levels at E14.5 and lumbar levels at E16.5. Some 5-HT-it fibers could be detected in the ventral and intermediate gray matter by E16.5, whereas the dorsal gray matter was not invaded before PN0. At PN10, a dense serotonergic innervation was restricted to the gray matter with a high concentration of 5-HT-it fibers in three areas: dorsal horn, ventral horn (where motoneurons are located) and intermediate area. Surprisingly, from E16.5 to PN10, 5-HT-it intraspinal neurons were found, exclusively at sacral levels. Their somata lay in the gray matter around the central canal and preferentially in the ventro-median part of the ventral horn. The functional significance of these sacral 5-HT-it neurons is discussed. (C) 2002 Elsevier Science BY. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available