4.5 Article

Dynamic simulation of the motion of fragmenting rock avalanches

Journal

CANADIAN GEOTECHNICAL JOURNAL
Volume 39, Issue 4, Pages 789-798

Publisher

NATL RESEARCH COUNCIL CANADA
DOI: 10.1139/T02-035

Keywords

rock avalanches; long runout; fragmentation; simulation model; dispersive stresses; earth pressure coefficients; Falling Mountain

Ask authors/readers for more resources

A mass-referenced continuum model for dynamic analysis of rapid mass movement (DAN) is verified by laboratory and field data. Increased earth pressure coefficients are used in this model to represent the dispersive pressures caused by fragmentation within a translating rock avalanche. The numerical model demonstrates that increased runout in large rock avalanches can occur with normal friction coefficients if higher than normal internal pressures, such as those believed to be generated by fragmentation, are present. The extent of the Falling Mountain rock-avalanche deposit in New Zealand is reproduced in the model with normal friction and high earth pressure coefficients to represent by analogy the additional internal pressures due to fragmentation. It appears that if internal friction is changed by fragmentation, it is only by a small amount and may increase rather than decrease. To test this, and to move beyond the present analogue model, requires a better understanding of the rheology of fragmenting rock.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available