4.5 Article

The role of galactose, lactose, and galactose valency in the biorecognition of N-(2-hydroxypropyl)methacrylamide copolymers by human colon adenocarcinoma cells

Journal

PHARMACEUTICAL RESEARCH
Volume 19, Issue 8, Pages 1114-1122

Publisher

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1023/A:1019885807067

Keywords

HPMA copolymer; biorecognition; galectin; colon-adenocarcinoma cells; lectin-mediated drug targeting; confocal microscopy

Funding

  1. NIDDK NIH HHS [DK39544] Funding Source: Medline

Ask authors/readers for more resources

Purpose. To examine the beta-galactoside and beta-lactoside binding capacity of three human colon-adenocarcinoma cell lines and their sugar specificity, using N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer conjugates of galactosamine, lactose, and triantennary galactose. Methods. Three types of HPMA copolymers containing the saccharide epitopes galactosamine (P-Gal), lactose (P-Lac), or triantennary galactose (P-TriGal) were synthesized. The relationship between the content of the saccharide moieties, the valency of the galactose residues, and their biorecognition by the cell lines (Colo-205, SW-480, and SW-620) was investigated using flow cytometry and confocal fluorescence microscopy analysis. Results. The binding of the glycoconjugates to the human colon-adenocarcinoma cell lines was dependent on the type and the number of bound sugar residues per macromolecule. The higher the sugar contents in the HPMA copolymers, the higher the extent of binding. Although introduction of galactoside residues into the HPMA copolymer resulted in a significant increase in the binding of the copolymers to the cells, low biorecognition of the lactoside-containing HPMA copolymers by all cell lines used was observed. The trivalent galactoside-containing HPMA copolymers did not yield a notable glycoside cluster effect for the beta-galactoside-binding lectin expressed on human colon-adenocarcinoma cells. Among the various cell lines, little differences in the extent of binding of the glycopolymers to the cells were observed. The data on the internalization of HPMA copolymer conjugates obtained by confocal fluorescence microscopy correlated well with the flow cytometry analysis of their biorecognition by target cells. Conclusions. The lectin-mediated endocytosis of the HPMA-glycoconjugates in human colon cancer cell lines suggests their potential use as targeting tools of cytotoxic drugs to colon adenocarcinoma.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available