4.5 Article

Characterization of a novel phenazine antibiotic gene cluster in Erwinia herbicola Eh1087

Journal

MOLECULAR MICROBIOLOGY
Volume 45, Issue 3, Pages 769-783

Publisher

WILEY
DOI: 10.1046/j.1365-2958.2002.03048.x

Keywords

-

Ask authors/readers for more resources

Erwinia herbicola strain Eh1087 produces the broad-spectrum phenazine antibiotic D-alanylgriseoluteic acid (AGA). In this report, a cluster of 16 ehp (Erwinia herbicola p henazine) plasmid genes required for the production of AGA by Eh1087 is described. The extent of the gene cluster was revealed by the isolation of 82 different Eh1087 AGA(-) mutants, all found to possess single mini-Tn5lacZ2 insertions within a 14 kbp DNA region. Additional transposon insertions that did not affect antibiotic production by Eh1087 were created to define the boundaries of the gene cluster. The size and location of genes between these boundaries were derived from a combination of DNA sequence analyses, minicell protein analyses and the correlation between mutation position and the production of coloured AGA intermediates by many ehp mutants. Precursor-feeding and complementation experiments resulted in 15 ehp genes being assigned to one of four functional groups according to their role in the synthesis of AGA. Group 1 is required for the synthesis of the phenazine nucleus in the form of antibiotic precursor one (AP1, phenazine-1,6-dicarboxylic acid). Group 2 is responsible for conversion of AP1 to AP2, which is subsequently modified to AP3 (griseoluteic acid) and exported by the group 3 gene products. Group 4 catalyses the addition of D-alanine to AP3 to create AGA, independently of groups 1, 2 and 3. A gene that is divergently transcribed from the 15 AGA synthesis ehp genes confers resistance to AGA.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available