4.7 Article

Foxa2 controls Pdx1 gene expression in pancreatic β-cells in vivo

Journal

DIABETES
Volume 51, Issue 8, Pages 2546-2551

Publisher

AMER DIABETES ASSOC
DOI: 10.2337/diabetes.51.8.2546

Keywords

-

Funding

  1. NIDDK NIH HHS [P30-DK-50306, P30-DK-19525, R01-DK-55342] Funding Source: Medline

Ask authors/readers for more resources

Differentiation of early foregut endoderm into pancreatic endocrine and exocrine cells depends on a cascade of gene activation events controlled by various transcription factors. Prior in vitro analysis has suggested that the forkhead/winged helix transcription factor Foxa2 (formerly HNF-3beta) is a major upstream regulator of Pdx1, a homeobox gene essential for pancreatic development. Pdx1 is also essential for the maintenance of glucose homeostasis, as its human orthologue, IPF-1, is mutated in a subset of patients with early-onset type 2 diabetes (MODY4). To analyze the Foxa2/Pdr1 regulatory cascade during pancreatic beta-cell differentiation, we used conditional gene ablation of Foxa2 in mice. We demonstrated that the deletion of Foxa2 in beta-cell-specific knockout mice results in downregulation of Pdx1 mRNA and subsequent reduction of PDX-1 protein levels in islets. These data represent the first in vivo demonstration that Foxa2 acts upstream of Pdx1 in the differentiated beta-cell.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available