4.7 Article

Ultra-thin gates for the transport of phenol from supported liquid membranes to permanent surface modified membranes

Journal

JOURNAL OF MEMBRANE SCIENCE
Volume 205, Issue 1-2, Pages 213-222

Publisher

ELSEVIER
DOI: 10.1016/S0376-7388(02)00114-X

Keywords

composite membranes; facilitated transport; inorganic membranes; liquid membranes; microporous and porous membranes

Ask authors/readers for more resources

We report on the development of membranes with an ultra-thin hydrophobic layer that can be used to support a liquid membrane or serve as a selective gate without further modification when the pore size is small enough. We use a thin layer of gold deposited on commercially available alumina supports to generate a layer on the surface that can be readily modified with thiols to control the hydrophobicity. Transport of 2,4,6-trichlorophenol (TCP) was attained with thiol-modified gold-coated alumina membranes sealed with dodecane. The flux rates through these membranes are five times faster than control experiments through unmodified membranes and show complete selectivity. This provides strong evidence that the flux rates are high enough to be limited by simple diffusion through the alumina support. We have also demonstrated that it is possible to make ultra-thin gates with the alkyl chain itself serving as the hydrophobic barrier. With a 17 carbon chain thiol attached to the membrane in the absence of dodecane, quantitative transport is observed with the same high flux rates observed for the dodecane-treated membranes. Fixing the hydrophobic barrier to the surface should allow for more stable membranes. (C) 2002 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available