3.8 Article Proceedings Paper

Non-destructive three-dimensional evaluation of a polymer sponge by micro-tomography using synchrotron radiation

Journal

BIOMOLECULAR ENGINEERING
Volume 19, Issue 2-6, Pages 73-78

Publisher

ELSEVIER
DOI: 10.1016/S1389-0344(02)00014-X

Keywords

biodegradable scaffold; X-ray microtomography, synchrotron radiation; three-dimensional image analysis; porosity

Ask authors/readers for more resources

X-ray micro-tomography, a non-destructive technique is used to uncover the complex 3-D micro-architecture of a degradable polymer sponge designed for bone augmentation. The measurements performed at HASYLAB at DESY are based on a synchrotron radiation source resulting in a spatial resolution of about 5.4 mum. In the present communication we report the quantitative analysis of the porosity and of the pore architecture. First, we elucidate that synchrotron radiation at the photon energy of 9 keV has an appropriate cross section for this low-weight material. Modifications in sponge micro-architecture during measurement are not detected. Second, the treatment of the data, an amount of 2.5 Gbyte to generate binary data is described. We compare the 3-D with the 2-D analysis in a quantitative manner. The obtained values for the mean distance to material within the sponge calculated from 2-D and 3-D data of the whole tomogram differ significantly: 12.5 mum for 3-D and 17.6 mum for 2-D analysis. If the pores exhibit a spherical shape as frequently found, the derived mean pore diameter, however, is overestimated only by 6% in the 2-D image analysis with respect to the 3-D evaluation. This approach can be applied to different porous biomaterials and composites even in a hydrated state close to physiological conditions, where any surface preparation artifact is avoided. (C) 2002 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available