4.5 Article

Large-scale brittle and ductile toppling of rock slopes

Journal

CANADIAN GEOTECHNICAL JOURNAL
Volume 39, Issue 4, Pages 773-788

Publisher

NATL RESEARCH COUNCIL CANADA
DOI: 10.1139/T02-027

Keywords

rock toppling; landslide; distinct element model; parametric study; hazard assessment

Ask authors/readers for more resources

Slow, ductile toppling of rock masses commonly creates large-scale mountain slope deformations. In some cases, rock toppling can initiate an extremely rapid catastrophic landslide. This theoretical and field-based study was aimed at distinguishing the two alternative modes of toppling. The idea that certain key parameters of the undeformed rock mass may influence failure behaviour in a quantifiable way was examined through a parametric study of a large rock slope using the universal distinct element code (UDEC). The slope was modelled using variations of rock mass strength, discontinuity orientation and persistence, and toe over-steepening. The results indicated two distinct types of failure behaviour: (i) ductile, self-stabilizing flexural toppling in weak rock with a single dominant joint set; and (ii) brittle, catastrophic block toppling in strong rock containing persistent, down-slope oriented or horizontal cross-joints, which act as surfaces of separation at the base of the toppling blocks. The two mechanisms exhibit very different patterns of prefailure stress. During flexural toppling, the major principal stress is oriented predominantly parallel with the slope surface. In the case of block toppling, it is vertical and a large part of the unstable volume is horizontally destressed. Boundaries between the two types of behaviour have been approximately mapped. Two field case studies were then examined in light of the results. The first case involves a block topple in strong granitic rocks that failed catastrophically and produced a high velocity rock avalanche; and the second case is a large flexural topple in metamorphic rocks, exhibiting slow deformations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available