4.7 Article

Cell culture model for acetaminophen-induced hepatocyte death in vivo

Journal

BIOCHEMICAL PHARMACOLOGY
Volume 64, Issue 3, Pages 413-424

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0006-2952(02)01180-2

Keywords

acetaminophen; necrosis; apoptosis; caspase-independent; proteasome

Funding

  1. NCI NIH HHS [CA74131] Funding Source: Medline
  2. NIGMS NIH HHS [GM51916, GM25418] Funding Source: Medline
  3. PHS HHS [P3007033] Funding Source: Medline

Ask authors/readers for more resources

Overdose of the popular, and relatively safe, analgesic acetaminophen (N-acetyl-p-aminophenol, APAP, paracetamol) can produce a fatal centrilobular liver injury. APAP-induced cell death was investigated in a differentiated, transforming growth factor alpha (TGFalpha)-overexpressing, hepatocyte cell line and found to occur at concentrations, and over time frames, relevant to clinical overdose situations. Coordinated multiorganellar collapse was evident during APAP-induced cytotoxicity with widespread, yet selective, protein degradation events in vitro. Cellular proteasomal activity was inhibited with APAP treatment but not with the comparatively nonhepatotoxic APAP regioisomer, N-acetyl-m-aminophenol (AMAP). Low concentrations of the proteasome-directed inhibitor MG132 (N-carbobenzoxyl-Leu-Leu-Leucinal) increased chromatin condensation and cellular stress responses preferentially in AMAP-treated cultures, suggesting a contribution of the proteasome in APAP- but not AMAP-mediated cell death. APAP-specific alterations to mitochondria were observed morphologically with evidence of mitochondrial proliferation in vitro. Biochemical alterations to cellular proteolytic events were also found in vivo, including APAP- or AMAP-mediated inhibition of caspase-3 processing. These results indicate that, although retaining some attributes of apoptosis, both APAP- and AMAP-mediated cell death have additional distinctive features consistent with longer term necrosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available