4.7 Review

Genetic control of root exudation

Journal

PLANT AND SOIL
Volume 245, Issue 1, Pages 59-70

Publisher

SPRINGER
DOI: 10.1023/A:1020646011229

Keywords

aluminium toxicity; citrate synthase; nod-gene inducers; nutrient deficiency; phosphatase; phytase; phytosiderophores; root exudation

Ask authors/readers for more resources

The literature on genetics of root exudation and on genotypic differences in qualitative and quantitative composition of root exudates in crop and native plant species was critically assessed. Differences in exudation have been reported for genotypes that differ in tolerance to nutrient deficiencies, ion toxicities, and pathogen attack. The exudation profile of a limited number of genotypes (frequently only two genotypes with the contrasting response to the environmental stress) have been reported to date. Little is known about the variability in larger samples of the germplasm or about actual genetics behind differential qualitative and quantitative composition of root exudates. Changing the exudation profile of a given genotype may be achieved by manipulating the biosynthetic capacity and by increasing the capacity of the plasma membrane to transport the specific compound out into the rhizosphere. Overexpression of the bacterial citrate synthase gene in the cytoplasm of tobacco plants resulted in exudation of large quantities of citrate into the rhizosphere and partial alleviation of the aluminium (Al) toxicity stress. A similar strategy of transforming plants with citrate synthase gene is being tried as a way of improving plant capacity to extract phosphorus (P) from soils with notoriously low P availability. More research into the genetic basis of qualitative and quantitative differences in root exudation is warranted. Understanding the genetic control of root exudation, followed by manipulation of qualitative and quantitative composition of root exudates, will result in better adaptation of plants to environmental conditions and a greater yield of crops.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available