4.6 Article

NEUTRINO TRANSFER IN THREE DIMENSIONS FOR CORE-COLLAPSE SUPERNOVAE. I. STATIC CONFIGURATIONS

Journal

ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES
Volume 199, Issue 1, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0067-0049/199/1/17

Keywords

methods: numerical; neutrinos; radiative transfer; stars: massive; stars: neutron; supernovae: general

Funding

  1. Ministry of Education, Culture, Sports, Science and Technology (MEXT) in Japan [20105004, 20105005, 19104006, 21540281, 22540296]
  2. MEXT, Japan
  3. Grants-in-Aid for Scientific Research [22540296, 20105004, 19104006, 21540281, 20105005] Funding Source: KAKEN

Ask authors/readers for more resources

We develop a numerical code to calculate the neutrino transfer with multi-energy and multi-angle in three dimensions (3D) for the study of core-collapse supernovae. The numerical code solves the Boltzmann equations for neutrino distributions by the discrete-ordinate (S-n) method with a fully implicit differencing for time advance. The Boltzmann equations are formulated in the inertial frame with collision terms being evaluated to the zeroth order of v/c. A basic set of neutrino reactions for three neutrino species is implemented together with a realistic equation of state of dense matter. The pair process is included approximately in order to keep the system linear. We present numerical results for a set of test problems to demonstrate the ability of the code. The numerical treatments of advection and collision terms are validated first in the diffusion and free-streaming limits. Then we compute steady neutrino distributions for a background extracted from a spherically symmetric, general relativistic simulation of a 15M(circle dot) star and compare them with the results in the latter computation. We also demonstrate multi-dimensional capabilities of the 3D code solving neutrino transfers for artificially deformed supernova cores in 2D and 3D. Formal solutions along neutrino paths are utilized as exact solutions. We plan to apply this code to the 3D neutrino-radiation hydrodynamics simulations of supernovae. This is the first article in a series of reports on the development.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available