4.6 Article

SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: PLANETS AND CELESTIAL CALIBRATION SOURCES

Journal

ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES
Volume 192, Issue 2, Pages -

Publisher

IOP Publishing Ltd
DOI: 10.1088/0067-0049/192/2/19

Keywords

galaxies: individual (Cygnus A, 3C274); ISM: supernova remnants; planets and satellites: general; radio continuum: general; space vehicles: instruments

Funding

  1. Science Mission Directorate Office at NASA Headquarters

Ask authors/readers for more resources

We present WMAP seven-year observations of bright sources which are often used as calibrators at microwave frequencies. Ten objects are studied in five frequency bands (23-94 GHz): the outer planets (Mars, Jupiter, Saturn, Uranus, and Neptune) and five fixed celestial sources (Cas A, Tau A, Cyg A, 3C274, and 3C58). The seven-year analysis of Jupiter provides temperatures which are within 1 sigma of the previously published WMAP five-year values, with slightly tighter constraints on variability with orbital phase (0.2% +/- 0.4%), and limits (but no detections) on linear polarization. Observed temperatures for both Mars and Saturn vary significantly with viewing geometry. Scaling factors are provided which, when multiplied by the Wright Mars thermal model predictions at 350 mu m, reproduce WMAP seasonally averaged observations of Mars within similar to 2%. An empirical model is described which fits brightness variations of Saturn due to geometrical effects and can be used to predict the WMAP observations to within 3%. Seven-year mean temperatures for Uranus and Neptune are also tabulated. Uncertainties in Uranus temperatures are 3%-4% in the 41, 61, and 94 GHz bands; the smallest uncertainty for Neptune is 8% for the 94 GHz band. Intriguingly, the spectrum of Uranus appears to show a dip at similar to 30 GHz of unidentified origin, although the feature is not of high statistical significance. Flux densities for the five selected fixed celestial sources are derived from the seven-year WMAP sky maps and are tabulated for Stokes I, Q, and U, along with polarization fraction and position angle. Fractional uncertainties for the Stokes I fluxes are typically 1% to 3%. Source variability over the seven-year baseline is also estimated. Significant secular decrease is seen for Cas A and Tau A: our results are consistent with a frequency-independent decrease of about 0.53% per year for Cas A and 0.22% per year for Tau A. We present WMAP polarization data with uncertainties of a few percent for Tau A. Where appropriate, WMAP results are compared against previous findings in the literature. With an absolute calibration uncertainty of 0.2%, WMAP data are a valuable asset for calibration work.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available