3.8 Article Proceedings Paper

An unscaled parameter to measure the order of surfaces: a new surface elaboration to increase cells adhesion

Journal

BIOMOLECULAR ENGINEERING
Volume 19, Issue 2-6, Pages 79-83

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S1389-0344(02)00048-5

Keywords

surface; roughness parameter; cell adhesion; human osteoblasts proliferation, electroerosion process, biomaterials

Ask authors/readers for more resources

We present a new parameter to quantify the order of a surface. This parameter is scale-independent and can be used to compare the organization of a surface at different scales of range and amplitude. To test the accuracy of this roughness parameter versus a hundred existing ones, we created an original statistical bootstrap method. In order to assess the physical relevance of this new parameter, we elaborated a great number of surfaces with various roughness amplitudes on titanium and titanium-based alloys using different physical processes. Then we studied the influence of the roughness amplitude on in vitro adhesion and proliferation of human osteoblasts. It was then shown that our new parameter best discriminates among the cell adhesion phenomena than other parameters (average roughness (Ra...)): cells adhere better on isotropic surfaces with a low order, provided this order is quantified on a scale that is more important than that of the cells. Additionally, on these low ordered metallic surfaces, the shape of the cells presents the same morphological aspect as that we can see on the human bone trabeculae. The method used to prepare these isotropic surfaces (electroerosion) could be undoubtedly and easily applied to prepare most biomaterials with complex geometries and to improve bone implant integration. Moreover, the new order parameter we developed may be particularly useful for the fundamental understanding of the mechanism of bone cell installation on a relief and of the formation of bone cell-material interface. (C) 2002 Published by Elsevier Science B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available