4.3 Article

Prediction of strand pairing in antiparallel and parallel β-sheets using information theory

Journal

PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS
Volume 48, Issue 2, Pages 178-191

Publisher

WILEY
DOI: 10.1002/prot.10152

Keywords

beta-sheet register; beta-pair; beta-triplet; inter-strand residue pairs; amphiphilic; hydrogen bonding

Ask authors/readers for more resources

An information theory approach was developed to predict the alignment of interacting antiparallel and parallel beta-strands. Information scores were derived for the preference of a residue on a beta-strand to be opposite a sequence of residues on an adjacent beta-strand. These scores were used to predict the interstrand register of interacting beta-strands from 10 alternative offset positions either side of the experimentally observed beta-sheet register. The amino acid sequence of an internal beta-strand can be correctly aligned with two beta-strands in a fixed position either side of the strand in 45% of antiparallel and 48% of parallel arrangements. For comparison, when another beta-strand from a nonhomologous protein substitutes the internal beta-strand, the same register is predicted for only 24 and 36% of antiparallel and parallel arrangements. As expected, alignment of a single fixed strand with just a second beta-strand sequence was more difficult, and gave a correct register in 31 and 37% of antiparallel and parallel beta-pairs, respectively. These scores are 10% higher than for two randomly selected beta-strand sequences. In general, prediction accuracy was not improved by information tables that distinguished hydrogen-bonding patterns or beta-strand order. These results will contribute to predicting the arrangement of beta-strands in beta-pleated sheets and protein topology. (C) 2002 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available