4.6 Article

FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: ANGULAR POWER SPECTRA

Journal

ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES
Volume 180, Issue 2, Pages 296-305

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0067-0049/180/2/296

Keywords

cosmic microwave background; cosmological parameters; cosmology: observations; early universe; large-scale structure of universe; space vehicles: instruments

Ask authors/readers for more resources

We present the temperature and polarization angular power spectra of the cosmic microwave background derived from the first five years of Wilkinson Microwave Anisotropy Probe data. The five-year temperature spectrum is cosmic variance limited up to multipole l = 530, and individual l-modes have signal-to-noise ratio S/N > 1 for l < 920. The best-fitting six-parameter Lambda CDM model has a reduced chi(2) for l = 33-1000 of chi(2)/nu = 1.06, with a probability to exceed of 9.3%. There is now significantly improved data near the third peak which leads to improved cosmological constraints. The temperature-polarization correlation is seen with high significance. After accounting for foreground emission, the low-l reionization feature in the EE power spectrum is preferred by Delta chi(2) = 19.6 for optical depth tau = 0.089 by the EE data alone, and is now largely cosmic variance limited for l = 2-6. There is no evidence for cosmic signal in the BB, TB, or EB spectra after accounting for foreground emission. We find that, when averaged over l = 2-6, l(l + 1)CBB(l)(BB)/(2 pi) < 0.15 mu K(2) (95% CL).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available