4.6 Article

PROTOSTELLAR DISK FORMATION ENABLED BY WEAK, MISALIGNED MAGNETIC FIELDS

Journal

ASTROPHYSICAL JOURNAL LETTERS
Volume 767, Issue 1, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/2041-8205/767/1/L11

Keywords

magnetic fields; protoplanetary disks; stars: formation; stars: protostars; stars: winds, outflows

Funding

  1. Alfred P. Sloan Foundation
  2. NSF [AST-0955300, AST 10-07713]
  3. NASA
  4. CARMA project
  5. NSF
  6. National Science Foundation
  7. CARMA partner universities
  8. Direct For Mathematical & Physical Scien
  9. Division Of Astronomical Sciences [0955300] Funding Source: National Science Foundation
  10. Division Of Astronomical Sciences
  11. Direct For Mathematical & Physical Scien [1140031, 1007713] Funding Source: National Science Foundation

Ask authors/readers for more resources

The gas from which stars form is magnetized, and strong magnetic fields can efficiently transport angular momentum. Most theoretical models of this phenomenon find that it should prevent formation of large (>100 AU), rotationally supported disks around most protostars, even when non-ideal magnetohydrodynamic (MHD) effects that allow the field and gas to decouple are taken into account. Using recent observations of magnetic field strengths and orientations in protostellar cores, we show that this conclusion is incorrect. The distribution of magnetic field strengths is very broad, and alignments between fields and angular momentum vectors within protostellar cores are essentially random. By combining the field strength and misalignment data with MHD simulations showing that disk formation is expected for both weak and misaligned fields, we show that these observations imply that we should expect disk fractions of similar to 10%-50% even when protostars are still deeply embedded in their parent cores, and even if the gas is governed by ideal MHD.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available