4.6 Article

TWO TIMESCALE DISPERSAL OF MAGNETIZED PROTOPLANETARY DISKS

Journal

ASTROPHYSICAL JOURNAL LETTERS
Volume 778, Issue 1, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/2041-8205/778/1/L14

Keywords

accretion, accretion disks; magnetohydrodynamics (MHD); protoplanetary disks

Funding

  1. NASA [NNX11AE12G, NNX13AI58G, NAS 5-26555]
  2. Space Telescope Science Institute [HST-AR-12814]
  3. California Institute of Technology (Caltech)
  4. NASA through the Sagan Fellowship Program
  5. NASA [NNX13AI58G, 473484] Funding Source: Federal RePORTER

Ask authors/readers for more resources

Protoplanetary disks are likely to be threaded by a weak net flux of vertical magnetic field that is a remnant of the much larger fluxes present in molecular cloud cores. If this flux is approximately conserved its dynamical importance will increase as mass is accreted, initially by stimulating magnetorotational disk turbulence and subsequently by enabling wind angular momentum loss. We use fits to numerical simulations of ambipolar dominated disk turbulence to construct simplified one-dimensional evolution models for weakly magnetized protoplanetary disks. We show that the late onset of significant angular momentum loss in a wind can give rise to two timescale disk evolution in which a long phase of viscous evolution precedes rapid dispersal as the wind becomes dominant. The wide dispersion in disk lifetimes could therefore be due to varying initial levels of net flux. Magnetohydrodynamic (MHD) wind triggered dispersal differs from photoevaporative dispersal in predicting mass loss from small (<1 AU) scales, where thermal winds are suppressed. Our specific models are based on a limited set of simulations that remain uncertain, but qualitatively similar evolution appears likely if mass is lost from disks more quickly than flux, and if MHD winds become important as the plasma beta decreases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available