4.7 Article

Density functional theory for inhomogeneous mixtures of polymeric fluids

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 117, Issue 5, Pages 2368-2376

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1491240

Keywords

-

Ask authors/readers for more resources

A new density functional theory is developed for inhomogeneous mixtures of polymeric fluids by combining Rosenfeld's fundamental-measure theory for excluded volume effects with Wertheim's first-order thermodynamic perturbation theory for chain connectivity. With no adjustable parameters, theoretical predictions are in excellent agreement with Monte Carlo simulation data for the density distributions and for the adsorption isotherms of hard-sphere chains near hard walls or in slit-like pores. This theory is applied to calculate the force between two parallel hard walls separated by hard-sphere chains at different densities. Calculated results indicate that the chain-mediated force is attractive and decays monotonically with separation at low chain densities, it oscillates at high chain densities and in between, it is attractive at small separation and repulsive at large separation. This new density functional theory is simpler than similar theories in the literature and is directly applicable to mixtures. (C) 2002 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available