4.5 Article

Saccharomyces cerevisiae wine strains differing in copper resistance exhibit different capability to reduce copper content in wine

Journal

WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY
Volume 18, Issue 6, Pages 499-503

Publisher

KLUWER ACADEMIC PUBL
DOI: 10.1023/A:1016306813502

Keywords

AAS; copper; Saccharomyces cerevisiae; wine

Ask authors/readers for more resources

Two wine strains of Saccharomyces cerevisiae, characterized by a different degree of copper resistance, were tested in grape must fermentation in the presence of different copper concentrations. The sensitive strain SN9 was strongly affected by copper concentration (32 ppm, (32 mg/l)), whereas the resistant strain SN41 exhibited a good growth activity in presence of 32 ppm of copper and only a reduced activity in presence of 320 ppm. The different strain fermentation performance in response to the copper addition corresponded to a different capability to accumulate copper inside the cells. Both strains exhibited the capacity to reduce the copper content in the final product, eventhough a significantly greater reducing activity was exerted by the resistant strain SN41, which was able to reduce by 90% the copper concentration in the final product and to accumulate the metal in great concentrations in the cells. As high concentrations of copper can be responsible for wine alterations, the selection of S. cerevisiae strains possessing high copper resistance and the ability to reduce the copper content of wine has a great technological interest, in particular for the fermentation of biological products. From the results obtained, the technique proposed is not only suitable for the assay of copper residues in must, wine and yeast cells, but it also offers the advantage of easy sample preparation and low detection limit in the ppb (mug/l) range.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available