4.8 Article

EphrinA1-induced cytoskeletal re-organization requires FAK and p130cas

Journal

NATURE CELL BIOLOGY
Volume 4, Issue 8, Pages 565-573

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/ncb823

Keywords

-

Categories

Ask authors/readers for more resources

Ephrins and Eph receptors are involved in axon guidance and cellular morphogenesis. An interaction between ephrin and Eph receptors elicits neuronal growth-cone collapse through cytoskeletal disassembly. When NIH3T3 cells were plated onto an ephrinA1-coated surface, the cells both adhered and spread. Adhesion and spreading proceeded concomitantly with changes in both the actin and microtubule cytoskeleton. EphA2, focal adhesion kinase (FAK) and p130(cas) were identified as the major ephrin-dependent phosphotyrosyl proteins during the ephrin-induced morphological changes. Mouse embryonic fibroblasts (MEFs) derived from FAK(-/-) and p130(cas-/-) mice had severe defects in ephrinA1-induced cell spreading, which were reversed after re-expression of FAK or p130 cas, respectively. Expression of a constitutively active EphA2 induced NIH3T3 cells to undergo identical, but ligand-independent, morphological changes. These data show that ephrinA1 can induce cell adhesion and actin cytoskeletal changes in fibroblasts in a FAK- and p130(cas)-dependent manner, through activation of the EphA2 receptor. The finding that ephrin-Eph signalling can result in actin cytoskeletal assembly, rather than disassembly, has many implications for ephrin-Eph responses in other cell types.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available