4.4 Article

Mechanism of Thermoanaerobacterium saccharolyticum ß-xylosidase:: Kinetic studies

Journal

BIOCHEMISTRY
Volume 41, Issue 31, Pages 9727-9735

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bi020077v

Keywords

-

Ask authors/readers for more resources

The catalytic mechanism of Thermoanaerobacterium saccharolyticum beta-xylosidase (XynB) from family 39 of glycoside hydrolases has been subjected to a detailed kinetic investigation using a range of substrates. The enzyme exhibits a bell-shaped pH dependence of k(cat)/K(m), reflecting apparent pK(a) values of 4.1 and 6.8. The k(cat) and k(cat)/K(m) values for a series of aryl xylosides have been measured and used to construct two Bronsted plots. The plot of log(k(cat)/K(m)) against the pK(a) of the leaving group reveals a significant correlation (beta(1g) = -0.97, r(2) = 0.94, n = 8), indicating that fission of the glycosidic bond is significantly advanced in the transition state leading to the formation of the xylosyl-enzyme intermediate. The large negative value of the slope indicates that there is relatively little proton donation to the glycosidic oxygen in the transition state. A biphasic, concave-downward plot of log(k(cat)) against pK(a) provides good evidence for a two-step double-displacement mechanism involving a glycosyl-enzyme intermediate. For activated leaving groups (pK(a) < 9), the breakdown of the xylosyl-enzyme intermediate is the rate-determining step, as indicated by the absence of any effect of the pK(a) of the leaving group on log(kat) (beta(1g) approximate to 0). However, a strong dependence of the first-order rate constant on the pK(a) value of relatively poor leaving groups (pK(a) > 9) suggests that the xylosylation step is rate-determining for these substrates. Support for the dexylosylation chemical step being rate-determining for activated substrates comes from nucleophilic competition experiments in which addition of dithiothreitol results in an increase in turnover rates. Normal secondary alpha-deuterium kinetic isotope effects ((alpha-D)(V) or (alpha-D)(V/K) = 1.08-1.10) for three different substrates of widely varying pK(a) value (5.15-9.95) have been measured and these reveal that the transition states leading to the formation and breakdown of the intermediate are similar and both steps involve rehybridization of C1 from sp(3) to sp(2). These results are consistent only with exploded transition states, in which the saccharide moiety bears considerable positive charge, and the intermediate is a covalent acylal-ester where C1 is sp(3) hybridized.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available