4.6 Article

THE γ-RAY EMISSION REGION IN THE FANAROFF-RILEY II RADIO GALAXY 3C 111

Journal

ASTROPHYSICAL JOURNAL LETTERS
Volume 751, Issue 1, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/2041-8205/751/1/L3

Keywords

galaxies: active; galaxies: jets

Funding

  1. National Aeronautics and Space Administration
  2. Department of Energy in the United States
  3. Commissariat a l'Energie Atomique
  4. Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France
  5. Agenzia Spaziale Italiana
  6. Istituto Nazionale di Fisica Nucleare in Italy
  7. Ministry of Education, Culture, Sports, Science and Technology (MEXT)
  8. High Energy Accelerator Research Organization (KEK)
  9. Japan Aerospace Exploration Agency (JAXA) in Japan
  10. K. A. Wallenberg Foundation
  11. Swedish Research Council
  12. Swedish National Space Board in Sweden
  13. Istituto Nazionale di Astrofisica in Italy
  14. Centre National d'Etudes Spatiales in France
  15. Italian Space Agency [ASI/GLAST I/017/07/0]

Ask authors/readers for more resources

The broad-line radio galaxy 3C 111, characterized by a Fanaroff-Riley II (FRII) radio morphology, is one of the sources of the misaligned active galactic nucleus sample, consisting of radio galaxies and steep spectrum radio quasars, recently detected by the Fermi Large Area Telescope (LAT). Our analysis of the 24month gamma-ray light curve shows that 3C 111 was only occasionally detected at high energies. It was bright at the end of 2008 and faint, below the Fermi-LAT sensitivity threshold, for the rest of the time. A multifrequency campaign of 3C 111, ongoing in the same period, revealed an increase of the millimeter, optical, and X-ray fluxes in 2008 September-November, interpreted by Chatterjee et al. as due to the passage of a superluminal knot through the jet core. The temporal coincidence of the millimeter-optical-X-ray outburst with the GeV activity suggests a cospatiality of the events, allowing, for the first time, the localization of the gamma-ray dissipative zone in an FRII jet. We argue that the GeV photons of 3C 111 are produced in a compact region confined within 0.1 pc and at a distance of about 0.3 pc from the black hole.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available