4.8 Article

Charge transport in photofunctional nanoparticles self-assembled from zinc 5,10,15,20-tetrakis(perylenediimide)porphyrin building blocks

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 124, Issue 32, Pages 9582-9590

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja026286k

Keywords

-

Ask authors/readers for more resources

Molecules designed to carry out photochemical energy conversion typically employ several sequential electron transfers, as do photosynthetic proteins. Yet, these molecules typically do not achieve the extensive charge transport characteristic of semiconductor devices. We have prepared a large molecule in which four perylene-3,4:9,10-tetracarboxydiimide (PDI) molecules that both collect photons and accept electrons are attached to a central zinc 5,10,15,20-tetraphenylporphyrin (ZnTPP) electron donor. This molecule self-assembles into ordered nanoparticles both in solution and in the solid-state, driven by van der Waals stacking of the PDI molecules. Photoexcitation of the nanoparticles results in quantitative charge separation in 3.2 ps to form ZnTPP+PDI- radical ion pairs, in which the radical anion rapidly migrates to PDI molecules that are, on average, 21 A away, as evidenced by magnetic field effects on the yield of the PDI triplet state that results from radical ion pair recombination. These nanoparticles exhibit charge transport properties that combine important features from both photosynthetic and semiconductor photoconversion systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available