4.7 Review

Therapeutic receptor targets of ischemic preconditioning

Journal

CARDIOVASCULAR RESEARCH
Volume 55, Issue 3, Pages 520-525

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S0008-6363(02)00316-4

Keywords

adenosine; infarction; preconditioning; receptors

Funding

  1. NHLBI NIH HHS [R01 HL060051, R01 HL060051-04] Funding Source: Medline

Ask authors/readers for more resources

This review focuses on target receptors, that have been shown to have the potential to mimic the cardioprotective effect of ischemic preconditioning (IPC). There is an abundance of information concerning the intracellular mechanisms and membrane-bound receptors responsible for IPC. Important intracellular mediators of this cardioprotection likely reside in the activation of multiple kinase cascades. The major players in IPC are thought to include protein kinase C, tyrosine kinases, and members of the mitogen-activated protein kinase signaling family and these topics will be covered in more detail in other papers of this focused issue. However, many of these kinase-mediated mechanisms are triggered by the activation of transmembrane spanning receptors, some of which may be manipulated therapeutically to induce cardioprotection in humans with unstable angina or who arc at risk for myocardial infarction. In this review, we will discuss the evidence supporting the possibility of manipulating several of these G protein-coupled receptors as potential therapeutic targets. Stimulation of numerous receptors has been targeted as possible triggers for IPC. Some of those that have been identified include A(1) adenosine, alpha(1) adrenergic, M-2 muscarinic, B-2 bradykinin, delta(1) opioid, AT(1) angiotensin, and endothelin-1 receptors. In general, these receptors are thought to couple to inhibitory G proteins. In this review, we will focus on die most likely therapeutic candidates for cardioprotection, namely adenosine, opioid, and bradykinin receptors since selective agonists and antagonists, either alone or in combination, have most often been shown to mimic or block IPC in numerous animal models and man, respectively. This is not meant to completely rule out other receptors since it is clear that IPC is a phenomenon with multiple pathways that appear to he responsible for the cardioprotection observed. (C) 2002 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available