4.8 Article

Macroscopically ordered state in an exciton system

Journal

NATURE
Volume 418, Issue 6899, Pages 751-754

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nature00943

Keywords

-

Ask authors/readers for more resources

There is a rich variety of quantum liquids-such as superconductors, liquid helium and atom Bose-Einstein condensates-that exhibit macroscopic coherence in the form of ordered arrays of vortices(1-4). Experimental observation of a macroscopically ordered electronic state in semiconductors has, however, remained a challenging and relatively unexplored problem. A promising approach for the realization of such a state is to use excitons, bound pairs of electrons and holes that can form in semiconductor systems. At low densities, excitons are Bose-particles(5), and at low temperatures, of the order of a few kelvin, excitons can form a quantum liquid-that is, a statistically degenerate Bose gas or even a Bose-Einstein condensate(5-7). Here we report photoluminescence measurements of a quasi-two-dimensional exciton gas in GaAs/AlGaAs coupled quantum wells and the observation of a macroscopically ordered exciton state. Our spatially resolved measurements reveal fragmentation of the ring-shaped emission pattern into circular structures that form periodic arrays over lengths up to 1 mm.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available