4.6 Article

Polariton dynamics and Bose-Einstein condensation in semiconductor microcavities

Journal

PHYSICAL REVIEW B
Volume 66, Issue 8, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.66.085304

Keywords

-

Ask authors/readers for more resources

We present a theoretical model that allows us to describe the polariton dynamics in a semiconductor microcavity at large densities, for the case of nonresonant excitation. Exciton-polariton scattering from a thermalized exciton reservoir is identified as the main mechanism for relaxation into the lower polariton states. A maximum in the polariton distribution that shifts towards lower energies with increasing pump power or temperature is shown, in agreement with recent experiments. Above a critical pump power, macroscopic occupancies (5x10(4)) can be achieved in the lowest-energy polariton state. Our model predicts the possibility of Bose-Einstein condensation of polaritons, driven by exciton-polariton interaction, at densities well below the saturation density for CdTe microcavities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available