4.6 Article

IMAGING THE MOLECULAR GAS PROPERTIES OF A MAJOR MERGER DRIVING THE EVOLUTION OF A z=2.5 SUBMILLIMETER GALAXY

Journal

ASTROPHYSICAL JOURNAL LETTERS
Volume 733, Issue 1, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/2041-8205/733/1/L11

Keywords

cosmology: observations; galaxies: active; galaxies: formation; galaxies: high-redshift; galaxies: starburst; radio lines: galaxies

Funding

  1. NASA [HST-HF-51235.01, NAS 5-26555]
  2. Associated Universities, Inc.

Ask authors/readers for more resources

We report the detection of spatially extended CO(J = 1 -> 0) and CO(J = 5 -> 4) emission in the z = 2.49 submillimeter galaxy (SMG) J123707+6214, using the Expanded Very Large Array and the Plateau de Bure Interferometer. The large molecular gas reservoir is spatially resolved into two CO(J = 1 -> 0) components (northeast and southwest; previously identified in CO J = 3 -> 2 emission) with respective gas masses of 4.3 and 3.5x10(10) (alpha(CO)/0.8) M-circle dot. We thus find that the optically invisible northeast component slightly dominates the gas mass in this system. The total molecular gas mass derived from the CO(J = 1 -> 0) observations is greater than or similar to 2.5 x larger than estimated from CO(J = 3 -> 2). The two components are at approximately the same redshift, but separated by similar to 20 kpc in projection. The morphology is consistent with that of an early-stage merger. The total amount of molecular gas is sufficient to maintain the intense 500 M-circle dot yr(-1) starburst in this system for at least similar to 160 Myr. We derive line brightness temperature ratios of r(31) = 0.39 +/- 0.09 and 0.37 +/- 0.10, and r(51) = 0.26 +/- 0.07 and 0.25 +/- 0.08 in the two components, respectively, suggesting that the J >= 3 lines are substantially subthermally excited. This also suggests comparable conditions for star formation in both components. Given the similar gas masses of both components, this is consistent with the comparable starburst strengths observed in the radio continuum emission. Our findings are consistent with other recent studies that find evidence for lower CO excitation in SMGs than in high-z quasar host galaxies with comparable gas masses. This may provide supporting evidence that both populations correspond to different evolutionary stages in the formation of massive galaxies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available