4.6 Article

GRAVITATIONAL PULSE ASTRONOMY

Journal

ASTROPHYSICAL JOURNAL LETTERS
Volume 729, Issue 2, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/2041-8205/729/2/L23

Keywords

gravitational waves; supernovae: general; white dwarfs

Funding

  1. NSF [AST-0757888]
  2. Direct For Mathematical & Physical Scien
  3. Division Of Astronomical Sciences [0757888] Funding Source: National Science Foundation

Ask authors/readers for more resources

Thompson has argued that the Kozai mechanism is primarily responsible for driving white dwarf binary mergers and so generating type Ia supernovae (SNe). If so, the gravitational-wave signal from these systems will be characterized by isolated repeating pulses that are well approximated by parabolic encounters. I show that it is impossible to detect these with searches based on standard assumptions of circular binaries, nor could they be detected by analogs of the repeating-pulse searches that have been carried out at higher frequencies, even if these were modified to barycentric time as a function of putative sky position. Rather, new search algorithms are required that take account of the intrinsic three-body motion of the source as well as the motion of the Earth. If these eccentric binaries account for even a modest fraction of the observed SN rate, then there should be of order 1 pulse every 20 s coming from within 1 kpc, and there should be of order 200 detectable sources in this same volume. I outline methods of identifying these sources both to remove this very pernicious background to other signals and to find candidate SN Ia progenitors, and I sketch practical methods to find optical counterparts to these sources and so measure their masses and distances.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available