4.6 Article

OBSERVATIONAL EVIDENCE FROM SDSS FOR A MERGER ORIGIN OF THE MILKY WAY'S THICK DISK

Journal

ASTROPHYSICAL JOURNAL LETTERS
Volume 725, Issue 2, Pages L186-L190

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/2041-8205/725/2/L186

Keywords

galaxies: individual (Milky Way); Galaxy: evolution; Galaxy: kinematics and dynamics; Galaxy: structure

Funding

  1. Alfred P. Sloan Foundation
  2. National Science Foundation
  3. U.S. Department of Energy
  4. National Aeronautics and Space Administration
  5. Japanese Monbukagakusho
  6. Max Planck Society
  7. Higher Education Funding Council for England

Ask authors/readers for more resources

We test four competing models that aim to explain the nature of stars in spiral galaxies that are well away (>1 kpc) from the midplane, the so-called thick disk: the stars may have gotten there through orbital migration, through satellite mergers and accretion, or through heating of pre-existing thin disk stars. The eccentricity distribution of thick disk stars has recently been proposed as a diagnostic to differentiate between these mechanisms. Drawing on SDSS data release 7, we have assembled a sample of 31,535 G-dwarfs with six-dimensional phase-space information and metallicities and have derived the orbital eccentricities for them. Comparing the resulting eccentricity distributions, p(e vertical bar z), with these particular simulations, we find that: (1) the observed p(e vertical bar z) is inconsistent with that predicted by orbital migration only, as there are more observed stars of high and of very low eccentricity; (2) simulations in which the thick disk is made predominantly through heating a pre-existing thin disk are also inconsistent, as they predict more high-eccentricity stars than observed; (3) the observed p(e vertical bar z) fits well with a gas-rich merger scenario, where most thick disk stars were born in situ. Further modeling could explore whether the data-simulation inconsistencies found here for the first three cases actually rule out the qualitative scenarios underlying these simulations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available