4.6 Article

OBSERVATIONAL EVIDENCE OF BACK REACTION ON THE SOLAR SURFACE ASSOCIATED WITH CORONAL MAGNETIC RESTRUCTURING IN SOLAR ERUPTIONS

Journal

ASTROPHYSICAL JOURNAL LETTERS
Volume 716, Issue 2, Pages L195-L199

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/2041-8205/716/2/L195

Keywords

Sun: activity; Sun: coronal mass ejections (CMEs); Sun: flares; Sun: magnetic topology; Sun: surface magnetism

Funding

  1. NSF [AGS-0839216, AGS-0819662, AGS-0849453]
  2. NASA [NNX08-AQ90G, NNX08-AJ23G]
  3. Div Atmospheric & Geospace Sciences
  4. Directorate For Geosciences [0839216] Funding Source: National Science Foundation

Ask authors/readers for more resources

Most models of solar eruptions assume that coronal field lines are anchored in the dense photosphere and thus the photospheric magnetic fields would not have rapid, irreversible changes associated with eruptions resulted from the coronal magnetic reconnection. Motivated by the recent work of Hudson et al. on quantitatively evaluating the back reaction due to energy release from the coronal fields, in this Letter we synthesize our previous studies and present analysis of new events about flare-related changes of photospheric magnetic fields. For the 11 X-class flares where vector magnetograms are available, we always find an increase of transverse field at the polarity inversion line (PIL) although only four events had measurements with 1 minute temporal resolution. We also discuss 18 events with 1 minute cadence line-of-sight magnetogram observation, which all show prominent changes of magnetic flux contained in the flaring delta spot region. Except in one case, the observed limbward flux increases while diskward flux decreases rapidly and irreversibly after flares. This observational evidence provides support, either directly or indirectly, for the theory and prediction of Hudson et al. that the photospheric magnetic fields must respond to coronal field restructuring and turn to a more horizontal state near the PIL after eruptions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available