4.5 Article

Amphiphilic effects of local anesthetics on rotational mobility in neuronal and model membranes

Journal

BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES
Volume 1564, Issue 1, Pages 123-132

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S0005-2736(02)00409-1

Keywords

fluorescent probe technique; rotational mobility; hydrocarbon interior; membrane interface; local anesthetic; biomembranes

Ask authors/readers for more resources

To provide a basis for studying the molecular mechanism of pharmacological action of local anesthetics, we carried out a study of the membrane actions of tetracaine, bupivacaine, lidocaine, prilocaine and procaine. Fluorescence polarization of 12-(9-anthroyloxy)stearic acid (12-AS) and 2-(9-anthroyloxy)stearic acid (2-AS) were used to examine the effects of local anesthetics on differential rotational mobility between polar region and hydrocarbon interior of synaptosomal plasma membrane vesicles (SPMV) isolated from bovine cerebral cortex, and liposomes of total lipids (SPMVTL) and phospholipids (SPMVPL) extracted from the SPMV The two membrane components differed with respect to 2 and 12 anthroyloxy stearate (2-AS, 12-AS) probes, indicating that a difference in the membrane fluidity may be present. In a dose-dependent manner, tetracaine, bupivacaine, lidocaine, prilocaine and procaine decreased anisotropy of 12-AS in the hydrocarbon interior of the SPMV, SPMVTL and SPMVPL, but tetracaine, bupivacaine, lidocaine and prilocaine increased anisotropy of 2-AS in the membrane interface. These results indicate that local anesthetics have significant disordering effects on hydrocarbon interior of the SPMV, SPMVTL and SPMVPL. but have significant ordering effects on the membrane interface, and thus they could affect the transport of Na+ and K+ in nerve membranes, leading to anesthetic action. (C) 2002 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available