4.6 Article

Human apical sodium-dependent bile salt transporter gene (SLC10A2) is regulated by the peroxisome proliferator-activated receptor α

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 277, Issue 34, Pages 30559-30566

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M203511200

Keywords

-

Ask authors/readers for more resources

The apical sodium-dependent bile salt transporter (ASBT/SLC10A2), also called the ileal bile acid transporter, mediates the intestinal absorption of bile salts. The efficiency of this transport process is a determinant of hepatic bile salt synthesis from cholesterol and of serum triglyceride levels. Our aim was to characterize the human ASBT gene promoter with respect to regulatory mechanisms that coordinately affect ASBT expression and hepatic lipid and bile salt metabolism. The minimal construct that confers full promoter activity contains three functional hepatocyte nuclear factor 1alpha (HNF1alpha) recognition sites, explaining the dependence of ASBT gene expression upon HNF1alpha. A nuclear receptor binding site arranged as a direct hexanucleotide repeat (DR1 motif) is localized similar to1.6 kb upstream of the transcription initiation site. Constructs containing this element were transactivated by WY14643 and ciprofibrate, ligands of the peroxisome proliferator-activated receptor alpha (PPARalpha), in Caco2 cells. The DR1 element was shown to bind the PPARalpha/9-cis-retinoic acid receptor heterodimer, and targeted mutagenesis of the DR1 motif abolished PPARalpha responsiveness. Ciprofibrate treatment of SK-ChA cholangiocytes increased ASBT mRNA levels, suggesting a physiologic role for PPARalpha-mediated ASBT gene regulation. This study identifies PPARalpha as a novel link between ileal bile salt absorption and hepatic lipid metabolism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available