4.8 Article

Nucleophilically assisted and cationic ring-opening polymerization of tin-bridged [1]ferrocenophanes

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 124, Issue 34, Pages 10062-10070

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja020206v

Keywords

-

Ask authors/readers for more resources

To obtain mechanistic insight, detailed studies of the intriguing spontaneous ambient temperature ring-opening polymerization (ROP) of tin-bridged [1]ferrocenophanes Fe(n-C5H4)(2)SnR2 3a (R = t-Bu) and 3b (R = Mes) in solution have been performed. The investigations explored the influence of non-nucleophilic additives such as radicals and radical traps, neutral and anionic nucleophiles, Lewis acids, protic species, and other cationic electrophiles. Significantly, two novel methodologies and mechanisms for the ROP of strained [1]ferrocenophanes are proposed based on this study. First, as the addition of amine nucleophiles such as pyridine was found to strongly accelerate the polymerization rate in solution, a new nucleophilically assisted ROP methodology was proposed. This operates at ambient temperature in solution even in the presence of chlorosilanes but, unlike the anionic polymerization of ferrocenophanes, does not involve cyclopentadienyl anions. Second, the addition of small quantities of the electrophilic species H+ and Bu3Sn+ was found to lead to a cationic ROP process. These studies suggest that the spontaneous ROP of tin-bridged [1]ferrocenophanes may be a consequence of the presence of spurious, trace quantities of Lewis basic or acidic impurities. The new ROP mechanisms reported are likely to be of general significance for the ROP of other metallocenophanes (e.g., for thermal ROP in the melt) and for other metallacycles containing group 14 elements.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available