4.6 Article Proceedings Paper

Role of uncertainty in sensorimotor control

Journal

Publisher

ROYAL SOC
DOI: 10.1098/rstb.2002.1101

Keywords

noise; uncertainty; motor control; motor planning; multisensory integration

Categories

Ask authors/readers for more resources

Neural signals are corrupted by noise and this places limits on information processing. We review the processes involved in goal-directed movements and how neural noise and uncertainty determine aspects of our behaviour. First, noise in sensory signals limits perception. We show that, when localizing our hand, the central nervous system (CNS) integrates visual and proprioceptive information, each with different noise properties, in a way that minimizes the uncertainty in the overall estimate. Second, noise in motor commands leads to inaccurate movements. We review an optimal-control framework, known as 'task optimization in the presence of signal-dependent noise', which assumes that movements are planned so as to minimize the deleterious consequences of noise and thereby minimize inaccuracy. Third, during movement, sensory and motor signals have to be integrated to allow estimation of the body's state. Models are presented that show how these signals are optimally combined. Finally, we review how the CNS deals with noise at the neural and network levels. In all of these processes, the CNS carries out the tasks in such a way that the detrimental effects of noise are minimized. This shows that it is important to consider effects at the neural level in order to understand performance at the behavioural level.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available