4.7 Article

ATMOSPHERIC CHARACTERIZATION OF FIVE HOT JUPITERS WITH THE WIDE FIELD CAMERA 3 ON THE HUBBLE SPACE TELESCOPE

Journal

ASTROPHYSICAL JOURNAL
Volume 785, Issue 2, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/785/2/148

Keywords

eclipses; planetary systems; techniques: photometric; techniques: spectroscopic

Funding

  1. NASA through Space Telescope Science Institute
  2. NASA [NAS 5-26555]
  3. National Science Foundation Graduate Research Fellowship [DGE-1144152]
  4. California Institute of Technology (Caltech)
  5. NASA through the Sagan Fellowship Program grant
  6. Yale University through the YCAA postdoctoral prize fellowship
  7. [HST-GO-12181]

Ask authors/readers for more resources

We probe the structure and composition of the atmospheres of five hot Jupiter exoplanets using the Hubble Space Telescope Wide Field Camera 3 (WFC3) instrument. We use the G141 grism (1.1-1.7 mu m) to study TrES-2b, TrES-4b, and CoRoT-1b in transit; TrES-3b in secondary eclipse; and WASP-4b in both. This wavelength region includes a predicted absorption feature from water at 1.4 mu m, which we expect to be nondegenerate with the other molecules that are likely to be abundant for hydrocarbon-poor (e. g., solar composition) hot Jupiter atmospheres. We divide our wavelength regions into 10 bins. For each bin we produce a spectrophotometric light curve spanning the time of transit or eclipse. We correct these light curves for instrumental systematics without reference to an instrument model. For our transmission spectra, our mean 1 sigma precision per bin corresponds to variations of 2.1, 2.8, and 3.0 atmospheric scale heights for TrES-2b, TrES-4b, and CoRoT-1b, respectively. We find featureless spectra for these three planets. We are unable to extract a robust transmission spectrum for WASP-4b. For our dayside emission spectra, our mean 1 sigma precision per bin corresponds to a planet-to-star flux ratio of 1.5 x 10(-4) and 2.1 x 10(-4) for WASP-4b and TrES-3b, respectively. We combine these estimates with previous broadband measurements and conclude that for both planets isothermal atmospheres are disfavored. We find no signs of features due to water. We confirm that WFC3 is suitable for studies of transiting exoplanets, but in staring mode multivisit campaigns are necessary to place strong constraints on water abundance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available