4.7 Article

THE FIRST STARS: A LOW-MASS FORMATION MODE

Journal

ASTROPHYSICAL JOURNAL
Volume 785, Issue 1, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/785/1/73

Keywords

cosmology: theory; dark ages, reionization, first stars; stars: formation; stars: Population III

Funding

  1. JWST Postdoctoral Fellowship through the NASA Postdoctoral Program (NPP)
  2. NASA through Astrophysics Theory and Fundamental Physics Program [NNX09AJ33G]
  3. NSF [AST-1009928]
  4. Direct For Mathematical & Physical Scien
  5. Division Of Astronomical Sciences [1009928] Funding Source: National Science Foundation

Ask authors/readers for more resources

We perform numerical simulations of the growth of a Population III stellar system under photodissociating feedback. We start from cosmological initial conditions at z = 100, self-consistently following the formation of a minihalo at z = 15 and the subsequent collapse of its central gas to high densities. The simulations resolve scales as small as similar to 1 AU, corresponding to gas densities of 1016 cm(-3). Using sink particles to represent the growing protostars, we evolve the stellar system for the next 5000 yr. We find that this emerging stellar group accretes at an unusually low rate compared with minihalos which form at earlier times (z = 20-30), or with lower baryonic angular momentum. The stars in this unusual system will likely reach masses ranging from <1 M-circle dot to similar to 5 M-circle dot by the end of their main-sequence lifetimes, placing them in the mass range for which stars will undergo an asymptotic giant branch (AGB) phase. Based upon the simulation, we predict the rare existence of Population III stars that have survived to the present day and have been enriched by mass overflow from a previous AGB companion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available