4.6 Article

Modeling interface-controlled phase transformation kinetics in thin films

Journal

JOURNAL OF APPLIED PHYSICS
Volume 117, Issue 17, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4919725

Keywords

-

Funding

  1. NSF-MRSEC at Northwestern [DMR-1121262]
  2. Northwestern MRSEC REU award

Ask authors/readers for more resources

The Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation is widely used to describe phase transformation kinetics. This description, however, is not valid in finite size domains, in particular, thin films. A new computational model incorporating the level-set method is employed to study phase evolution in thin film systems. For both homogeneous (bulk) and heterogeneous (surface) nucleation, nucleation density and film thickness were systematically adjusted to study finite-thickness effects on the Avrami exponent during the transformation process. Only site-saturated nucleation with isotropic interface-kinetics controlled growth is considered in this paper. We show that the observed Avrami exponent is not constant throughout the phase transformation process in thin films with a value that is not consistent with the dimensionality of the transformation. Finite-thickness effects are shown to result in reduced time-dependent Avrami exponents when bulk nucleation is present, but not necessarily when surface nucleation is present. (C) 2015 AIP Publishing LLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available